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Abstract—As the search continues for low-cost and high-per- voltage. This change in permittivity can be used to change
formance components for the front-end devices for wireless the electrical length of a transmission line and, hence, in the
communications systems, some focus has been placed on explorlngjesign of low-cost phase shifters. Results from a comparative

new and innovative designs based on ferroelectric technology. In . .
this paper, we present new phase-shifter designs and an integratedStudy between the ferroelectric and MEMS technologies are

phased-array antenna system based on the use of multilayer SUmmarized elsewhere [4]-{7].
ferroelectric materials and the continuous transverse stub (CTS) A commonly used ferroelectric material in this application

technologies. Simulation results show that with the appropriate s Ba,Sr,_, TiO5 (BSTO), and recent advances in the develop-

selection of the materials properties and the dimensions of the o+ ot these materials have resulted in lowering the dielectric
multilayer dielectric system, insertion losses may be reduced by as

much as a factor of 100. These results also show that while only aconstant(v100), decreasing the loss tangemnii(6 < 0.0009),

slight reduction (15%) in the maximum achievable tunability was increasing the tunability, and reducing the sensitivity of the ma-
observed, it was possible to achieve significant improvement in terial to temperature variations. It was, however, generally felt
impedance-matching characteristics. A procedure to enhance the that phase-shifter designs based on this technology, although
radiation efficiency from an integrated ferroelectric/CTS phased low cost, still exhibited unacceptably high insertion losses. Ad-

t design is d ibed and ifi desi " - . . . -
ggfgg;g_rray esign Is described and speciic array designs are ditionally, the integration of these phase shifters in an integrated

, h -arr ntenn m m ill mbersom rtic-
Index Terms—Antenna array, continuous transverse stub, ferro- phased-array antenna syste ay still be cumbersome, partic

electric material, microstrip, multilayer dielectrics, phase shifter. ularly when blaslng C'rCU'FS are 'nCIUded_' Itis, therefore_, im-
portant that besides lowering the losses in the ferroelectric ma-

terials, say, by Mn-doping and reducing the sensitivity to tem-
. INTRODUCTION perature variation through baseline biasing, new phase-shifter
ILTERS, phase shifters, and switches for phased-arrdgsigns need to be developed, as well as an effective procedure
antenna designs based on microelectromechanical sysfemintegrating them in a phased-array antenna system.
(MEMS) devices have recently received considerable attentioriThe continuous transverse stub (CTS) technology was devel-
[1]-[3].t The low-cost, high-performance, and successfabed in the early 1990's, and its highly publicized benefits in-
operation at higher microwave and even millimeter-wavglude compact size, light weight, low loss, and high directivity
frequencies has certainly sparked significant research activitigg], In addition, high gains were achieved along with greater di-
and ongoing research activities continue to address remainingnsional insensitivity, which reduced fabrication costs [9].
limitations of MEMS technology, including the relatively high In this paper, we describe a new phase-shifter design proce-
required bias voltage, stiction, dielectric breakdown, packagingre that is based on the use of multilayer dielectric materials
issues, limited capacitance tunability, and lowgrnnductors including a middle layer of highly tunable ferroelectric mate-
for filter designs. Ferroelectric materials, on the other hand, aial. The effectiveness of this approach in reducing the insertion
characterized by change in permittivity with an applied dc-biassses is evaluated and its impact on device tunability has been
quantified. An effective procedure for integrating these phase
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Fig. 1. Schematic of the multilayer dielectric in a parallel-plate transmission
line. A highly tunable dielectric material is insulated from the conductors
through a thin layer of Teflon.
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RESULTS OF THECONDUCTORLOSSES IN AMULTILAYER TRANSMISSION-LINE
STRUCTURE FOR THE CASE OF¢,. = 400, REDUCTION OF LOSSES BY A
FACTOR OF 100WAS ACHIEVED. H (HEIGHT OF WAVEGUIDE) = 0.48 mm,
0.01 mm AIR GAP ON EACH SIDE OF THE FERROELECTRICMATERIAL,
AND FERROELECTRICMATERIAL HEIGHT = 0.46 mm. RESULTS WERE

Fig. 3. S.. versus frequency for the feed structure shown in Fig. 2.
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Fig. 2. Schematic of the feed geometry to improve the impedance-matching
characteristics.

schematic of the proposed arrangement, whereby the ferroelec-
tric material is separated from the transmission-line conductors
by a low dielectric-constant material such as Teflon.

It is expected that such an arrangement will tend to concen-
trate the microwave energy in the core ferroelectric material and,
hence, would result in a reduction in the surface current on the
transmission-line conductors. This reduces the conductor losses
and, in addition, increases the characteristic impedance, thus im-

Conductor Loss (dB/mm)

Thickness of Teflon t(um)
proving the matching characteristics of these devices. Table | (b)

shows simulation results where it may be seen that it is possip,& n
to achieve reduction in the conductor losses by as much agagsmission-line phase shifters, one fully filled with ferroelectric material and

(@) Total and (b) conductor losses for two parallel-plate

factor of 100. one filled with multilayer dielectric material.

Equally important to note is that, subject to using ferroelectric
material of higher dielectric constant (e g.,= 400), it may be significant reduction in the conductor losses when the multidi-
possible to maintain a high percentage (85%) of the achievablectric layer arrangement is used. As may be noted, regardless
tunability when loading with the multidielectric layer arrangeef the height of the transmission-line structure, a reduction by
ment including a single layer of ferroelectric material. Addia factor of four or more (particularly for larger heights) may be
tional design improvement was achieved using a wedge-shajpetiieved. It is also worth mentioning that this case was calcu-
ferroelectric slab (see Fig. 2) that helped improve the impedariagd for ferroelectric material ef. = 500 andtan § = 0.0009,
matching characteristics. Fig. 3 shows the variatiodgfwith  which resulted in conductor losses dominating the total trans-
frequency, where the broad-band nature of the proposed phasession losses. For other types of ferroelectric materials that
shifter design should be emphasized (20-34 GHz,Star <  may have larger values of loss tangent, the contribution of the
—10 dB). conductor losses to the total losses may be less significant and,

Figs. 4 and 5 illustrate the simulated characteristics of a pd&wence, the multilayer arrangements will provide a reduced level
allel-plate transmission line when loaded with the multidieleof advantage [11]. One might wonder why the relative reduction
tric arrangement including a ferroelectric layer. Fig. 4 shows tlie the conductor losses is more significant when larger heights
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TABLE I
EFFECT OFVARYING THE THICKNESS OF THEFERROELECTRICMATERIAL IN A MULTILAYER PARALLEL -PLATE WAVEGUIDE ARRANGEMENT. THE THICKNESS OF
THE AIR LAYER WAS KEPT CONSTANT AND EQUAL TO 0.01 mm,AND THE DIELECTRIC CONSTANT OF THE FERROELECTRICMATERIAL WAS
ASSUMED400AND tan 6 = 0.0009

Ferroelectric | Normalized beam steering | Normalized Loss | Zo (100 mm width)
0.16 mm 0.1873 0.0536 0.1434
0.26 mm 0.4376 0.022 0.4145
0.46 mm 0.8439 0.0011 1.3663
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Fig. 5. Phase shift for a parallel-plate phase shifter with multilayer Layer width (um)

ferroelectric material. The phase shift is compared between biased and

unbiased states. The height of the parallel-plate waveguide was varied. Fig. 6. Microstrip line with ferroelectric substrate. The low dielectric layer has
a depth of 0.5¢m and the dielectric constant is ten. Frequeacy GHz and
the width of the layer was varied.

of the parallel-plate waveguide are used. As previously men-

tioned, larger heights result in larger characteristic impedangﬁother added advantage in the design and optimization of the
vglues a_nd_, hence, lower vaIL!es of the conductor Iossgs to be}%’igrostrip phase shifter structure.

with. This is true, but results in Table Il show that the increase
in the height of the parallel-plate waveguide more than compen-
sates for the reduction in the characteristic impedance that rH!
sults from the increase in the effective dielectric constant of the
multilayer dielectric arrangement. Hence, an overall increase inintegrating the phase-shifting characteristics of a tunable
the impedance value is observed, and a reduction in the ovesalttion of transmission line loaded with multilayer dielectric,
value of the conductor losses is achieved. This observation wwagether with radiating stubs in a CTS-type design arrange-
further confirmed by examining finite-difference time-domaiment, provides a significant opportunity in the design of a
(FDTD) results and the detailed values of the electric and magw-cost phased-array antenna with beam-steering capability.
netic fields confined in the ferroelectric and air regions in th& schematic of one of the implemented designs is shown
multilayer dielectric arrangement. Fig. 5 shows the phase shift Fig. 7, and its simulated characteristics together with the
that may be accomplished when the multilayer dielectric aresulting radiation patterns are shown in Fig. 8. The CTS
rangement is used. It is to be noted that the multilayer arrangeray shown in Fig. 7 is ak-band five-element array with
ment results in a reduction in the phase shift between the biaseditilayer dielectric loading. Also shown in this figure is a
and unbiased condition, and this clearly represents the tradgmigsible voltage biasing approach, whereby 0.01-mm biasing
between the reduction in the total propagation losses and thiees were connected to each other and to the dc-biasing
achievable phase shift between the biasing conditions. voltage through RF blocking inductors.

Fig. 6 illustrates the general tradeoffs involved in the Additional design issues in the proposed antenna
design of ferroelectric-loaded microstrip transmission-lingystem—such as additional losses due to biasing and av-
phase shifters. As may be seen, the implementation of theues for reducing sensitivity to fabrication tolerances—were
multilayer structure decreases the tunability and, hence, thiso considered in the design shown in Fig. 8. It is shown
achievable phase shift. This disadvantage is associated wiitht the inclusion of multilayers of conductor strips inside the
two separate, but related advantages including the increésmoelectric material layer not only reduces the required bi-
in the characteristic impedancg, and an improvement in asing voltage through this multistage series operation, but also
the transmission coefficierfi;;. The reduction in the biasing has a minimal effect on the propagation losses in the material
with the reduction in the thickness of the ferroelectric laydd1]. Typical bias requirement for the ferroelectric materials is
(i.e., increase in thickness of the low dielectric layer) is yetbout 2—3 V per micrometer of the material thickness. It is also

. PHASED ANTENNA ARRAY DESIGNSUSING INTEGRATED
FERROELECTRICMATERIAL AND THE CTS TECHNOLOGY
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Fig. 7. Schematic of aiX -band five-element antenna array using CTS technology and multilayer loaded feed structure.
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Fig. 8. Radiation pattern of the five-element CTS antenna array shown
Fig. 7. This figure illustrates the steering capability with the use of ferroelectr
materials. At 10 GHz, 90% radiation is achieved. Element spacing is 15 m
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shown that by opening an air gap in the ferroelectric material
just beneath the radiating stubs, significant enhancement in
the radiation efficiency was achieved, in addition to reduced
sensitivity to fabrication tolerances, particularly at the base
of the radiating stubs. The latter effect is a consequence of
dealing with the larger wavelengths in an air region beneath
the stub rather than that of a high dielectric one (much shorter
wavelength) if the ferroelectric material was to be placed
beneath the stubs.

Fig. 9 shows another innovative design of the integrated CTS
and ferroelectric material technologies. This figure illustrates a
possible realization of a multiband CTS array whereby a high-
frequency radiating stub was placed after the input port of the
array, while the low-frequency radiating stub was placed after
the high-frequency one. The idea is that the high-frequency sig-
nals would be radiated by the high-frequency stub and lim-
ittd energy would reach the low-frequency stub (hence, low
:ﬁn at the higher frequency). If designed properly, the high-fre-

For 20% tunability, the peak angle beam width#i80°, 3-dB cover angle is quency stubs should be passing on the low-frequency signal
+43; for 10% tunability, the peak angle beam width4sl5°, 3-dB cover
angle is+27°. Directivity (D) = 9.59 dB (at @), D = 9.58 dB (at+15°),

andD = 9.35 dB (at+30).

(high S, at the lower frequency) and much of this low-fre-
guency signal would be radiated by a properly designed low-fre-
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